The Book of Why The New Science of Cause and Effect. Pearl, Judea, and Dana Mackenzie. 2018. Hachette UK.

Main Article Content

Stephen Powell
https://orcid.org/0000-0002-8776-9845

Abstract

A review of the book The Book of Why: The New Science of Cause and Effect by Judea Pearl and Dana Mackenzie, published in 2018 by Hachette UK.

Downloads

Download data is not yet available.

Article Details

How to Cite
Powell, S. (2018). The Book of Why: The New Science of Cause and Effect. Pearl, Judea, and Dana Mackenzie. 2018. Hachette UK. Journal of MultiDisciplinary Evaluation, 14(31), 47–54. https://doi.org/10.56645/jmde.v14i31.507
Section
Reviews
Author Biography

Stephen Powell, ProMENTE Social Research, Sarajevo

Director

References

Blyth, C. R. (1972). On Simpson's paradox and the sure-thing principle. Journal of the American Statistical Association, 67(338), 364-366. https://doi.org/10.1080/01621459.1972.10482387 DOI: https://doi.org/10.1080/01621459.1972.10482387

Burks, B. S. (1926). On the inadequacy of the partial and multiple correlation technique. Journal of Educational Psychology, 17(8), 532 - 540. https://doi.org/10.1037/h0070156 DOI: https://doi.org/10.1037/h0070156

Collier, D. (2011). Understanding process tracing. PS: Political Science & Politics, 44(4), 823-830. https://doi.org/10.1017/S1049096511001429 DOI: https://doi.org/10.1017/S1049096511001429

Cook, T.D., & Campbell, D.T. (1979). The design and conduct of true experiments and quasi-experiments in field settings. In R.T. Mowday & R.M. Steers, (Eds.), Research in organizations: Issues and controversies. Santa Monica, CA: Goodyear Publishing Company.

Kahneman, D. (2011). Thinking, fast and slow. New York: Farrar, Straus; Giroux.

Keele, L. (2015). Causal mediation analysis: Warning! Assumptions ahead. American Journal of Evaluation, 36(4), 500-513. https://doi.org/10.1177/1098214015594689 DOI: https://doi.org/10.1177/1098214015594689

Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24(1), 65-75. https://doi.org/10.1016/S0020-7373(86)80040-2 DOI: https://doi.org/10.1016/S0020-7373(86)80040-2

Lewis, D. (1973). Causation. The Journal of Philosophy, 70(17), 556-567. https://doi.org/10.2307/2025310 DOI: https://doi.org/10.2307/2025310

Mayne J. (2001). Addressing attribution through contribution analysis: Using performance measures sensibly. The Canadian Journal of Program Evaluation, 16(1), 1-24. https://doi.org/10.3138/cjpe.016.001 DOI: https://doi.org/10.3138/cjpe.016.001

Pawson, R., & Tilley, N. (1997). Realistic evaluation. London: Sage.

Pearl, J. (2000). Causality: Models, reasoning and inference. Cambridge: Cambridge University Press.

Pearl, J., & Mackenzie, D. (2018). The book of why: The new science of cause and effect. New York: Basic Books.

Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal inference in statistics: A primer. West Sussex, UK: John Wiley & Sons.

Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1), 41-55. https://doi.org/10.1093/biomet/70.1.41 DOI: https://doi.org/10.1093/biomet/70.1.41

Spirtes, P., Glymour, C. N., & Scheines, R. (2000). Causation, prediction, and search. Cambridge, Massechusetts: MIT press. https://doi.org/10.7551/mitpress/1754.001.0001 DOI: https://doi.org/10.7551/mitpress/1754.001.0001

West, S. G., & Koch, T. (2014). Restoring causal analysis to structural equation modeling. Review of causality: models, reasoning, and inference, by Judea Pearl: New York, NY: Cambridge University Press. https://doi.org/10.1080/10705511.2014.856700 DOI: https://doi.org/10.1080/10705511.2014.856700

Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20(7), 557-585.

Zadeh, L. (1973). Outline of a new approach to the analysis of complex systems and decision processes. Systems, Man and Cybernetics, IEEE Transactions on, SMC-3(1), 28-44. https://doi.org/10.1109/TSMC.1973.5408575 DOI: https://doi.org/10.1109/TSMC.1973.5408575