A Complexity-Based Plan for Evaluating Transformation

Main Article Content

Jonny Morell

Abstract

Abstract

This article presents a case for more rigorous application of complexity science in our efforts to evaluate activity that seeks to bring about transformative change. It builds on the work that is already going on in the evaluation community. Three constructs from complexity science are employed – sensitive dependence, emergence, and social attractors. The paper argues that if–then logic is recommended for small-scale change within transformation efforts, but that to evaluate transformation writ large, data from if–then evaluation must be embedded in, and interpreted in terms of, complex behavior. Methodologies for evaluating within this framework are presented. The argument is linked to a definition of transformation that is multidimensional, non-linear, and measurable. The paper is built around a generic model of transformational change and shows how that model can be customized for specific transformation scenarios. It also shows how evaluation with respect to complexity can be accomplished with methodologies that are well known and well-practiced in the evaluation community.

Downloads

Download data is not yet available.

Article Details

How to Cite
Morell, J. (2023). A Complexity-Based Plan for Evaluating Transformation. Journal of MultiDisciplinary Evaluation, 19(45), 105–130. https://doi.org/10.56645/jmde.v19i45.867
Section
Ideas to Consider

References

Acemoglu, D., & Robinson, J. A. (2012). Why nations fail. Currency / Random House. https://www.penguinrandomhouse.com/books/205014/why-nations-fail-by-daron-acemoglu-and-james-a-robinson/

Anand, A. (2020, second quarter). Integrating big geodata and technology in evaluation: What do we need to know? Evaluation Matters Magazine. https://idev.afdb.org/en/document/preparing-evaluation-future-big-data-modern-technologies-and-shifts-global-development

Anguko, A. (2020). Application of SurveyCTO mobile data collection technology in household surveys: The case of an impact evaluation of the Community Based Integrated Water Resource Management Project in Niger Evaluation Matters Magazine. https://idev.afdb.org/en/document/preparing-evaluation-future-big-data-modern-technologies-and-shifts-global-development DOI: https://doi.org/10.21201/2019.4641

Bamberger, M., & York, P. (2020, second quarter). Transforming evaluation in the 4th industrial revolution: Exciting opportunities and new challenges. Evaluation Matters Magazine. https://idev.afdb.org/en/document/preparing-evaluation-future-big-data-modern-technologies-and-shifts-global-development

Bar-Yam, Y. (2021). Concept map. New England Complex Systems Institute. https://necsi.edu/concept-map

Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509. https://doi.org/10.1126/science.286.5439.509 DOI: https://doi.org/10.1126/science.286.5439.509

Barbrook-Johnson, P., Proctor, A., Giorgi, S., & Phillipson, J. (2020). How do policy evaluators understand complexity? Evaluation, 26(3), 315–332. https://doi.org/10.1177/1356389020930053 DOI: https://doi.org/10.1177/1356389020930053

Batra, G., Garcia, J., & Temnenko, K. (2022). Transformational change for achieving scale: Lessons for a greener recovery. In J. I. Uitto & G. Battra (Eds.), Transformational change for people and the planet: Evaluating environment and development (pp. 27–38). Springer. DOI: https://doi.org/10.1007/978-3-030-78853-7_3

Bicket, M., Christie, I., Gilbert, N., Hills, D., Penn, A., & Wilkinson, H. (2020). Supplementary guide: Handling complexity in policy evaluation (HM Treasury Ed.). CECAN—the Centre for Evaluating Complexity Across the Nexus. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/879437/Magenta_Book_supplementary_guide._Handling_Complexity_in_policy_evaluation.pdf

Box, G. E. P. (1979). Robustness in the strategy of scientific model building. In R. L. Launer & G. N. Wilkinson (Eds.), Robustness in Statistics (pp. 201–236). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-438150-6.50018-2

Byrne, D., & Uprichard, E. (2012). Useful complex causality. In H. Kinkard (Ed.), Oxford handbook of philosophy of social science (pp. 109–129). Oxford University Press. https://doi.org/https://doi.org/10.1093/oxfordhb/9780195392753.013.0006 DOI: https://doi.org/10.1093/oxfordhb/9780195392753.013.0006

Castellani, B., & Gerrits, L. (2021). 2021 map of the complexity sciences. Art & Science Factory. https://www.art-sciencefactory.com/complexity-map_feb09.html

Comfort, L. K. (1994). Self-Organization in complex systems. Journal of Public Administration Research and Theory, 4(3), 393–410. http://www.jstor.org/stable/1181895

Egré, P., & Rott, H. (2021). The logic of conditionals. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy. Stanford University.

Feinstein, O. (2019). Dynamic evaluation for transformational change. In R. D. van den Berg, C. Magro, & S. S. Mulder (Eds.), Evaluation for transformational change: Opportunities and challenges for the Sustainable Development Goals (pp. 17–32). International Development Evaluation Association (IDEAS). https://ideas-global.org/wp-content/uploads/2019/11/2019-11-05-Final_IDEAS_EvaluationForTransformationalChange.pdf

Firmansyah, R., Putri, D., Wicaksono, M., Putri, S., Widianto, A., & Palil, M. (2021). Educational transformation: An evaluation of online learning due To COVID-19. International Journal of Emerging Technologies in Learning (iJET), 16(7), 61–76. DOI: https://doi.org/10.3991/ijet.v16i07.21201

Fisher, S., & Roehrer, C. (2020). Understanding progress towards transformation, in time. EIT Climate-KIC.

Frigg, R., & Hartmann, S. (2018). Models in Science. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy. Stanford University. https://plato.stanford.edu/archives/sum2018/entries/models-science/

Gates, E. F., Walton, M., Vidueira, P., & McNall, M. (2021). Introducing systems- and complexity-informed evaluation. New Directions for Evaluation, 170, 13–25. https://doi.org/https://doi.org/10.1002/ev.20466 DOI: https://doi.org/10.1002/ev.20466

Glaeser, E. (2012). Triumph of the city: How our greatest invention makes us richer, smarter, greener, healthier, and happier. Penguin Group. DOI: https://doi.org/10.17323/1726-3247-2013-4-75-94

Gordon, T. J., & Glenn, J. C. (2009). Environmental scanning. In T. J. Gordon & J. C. Glenn (Eds.), Futures research methodology — version 3.0. The Millennium Project. https://www.researchgate.net/profile/Jerome-Glenn/publication/286279000_Environmental_Scanning/links/5667954a08aea62726ee9541/Environmental-Scanning.pdf

Greenhalgh, T., Humphrey, C., Hughes, J., Macfarlane, F., Butler, C., & Pawson, R. (2009). How do you modernize a health service? A realist evaluation of whole-scale transformation in London. The Milbank Quarterly, 87(2), 391–416. https://doi.org/https://doi.org/10.1111/j.1468-0009.2009.00562.x DOI: https://doi.org/10.1111/j.1468-0009.2009.00562.x

Greenhalgh, T., Robert, G., Macfarlane, F., Bate, P., & Kyriakidou, O. (2004). Diffusion of innovations in service organizations: Systematic review and recommendations. The Milbank Quarterly, 82(4), 581–629. https://doi.org/10.1111/j.0887-378X.2004.00325.x DOI: https://doi.org/10.1111/j.0887-378X.2004.00325.x

Ibrahim, M., El-Zaart, A., & Adams, C. (2017, September 12–14). Theory of change for the transformation towards smart sustainable cities [Paper presentation]. Sensors Networks Smart and Emerging Technologies (SENSET). Beiriut, Lebanon DOI: https://doi.org/10.1109/SENSET.2017.8125067

Initiative for Climate Action Transparency (ICAT). (2020). Transformational change methodology: Assessing the transformational impacts of policies and actions. https://www.iges.or.jp/en/pub/transformational-change-methodology/en

International Evaluation Group. (2016). Supporting transformational change for poverty reduction and shared prosperity. World Bank. https://ieg.worldbankgroup.org/evaluations/supporting-transformational-change-poverty-reduction-and-shared-prosperity

Jeong, H., Néda, Z., & Barabási, A. L. (2003). Measuring preferential attachment in evolving networks. Europhysics Letters (EPL), 61(4), 567–572. https://doi.org/10.1209/epl/i2003-00166-9 DOI: https://doi.org/10.1209/epl/i2003-00166-9

Lamberson, P. J., & Page, S. E. (2012). Tipping points (Paper #12-02-002). Santa Fe Institute. https://www.santafe.edu/research/results/working-papers/tipping-points

Leo, B., Pattni, S., Winn, C., Lewis, Q., Paton, C., & Fraym, M. P. (2020, second quarter). Using machine learning for climate related impact evaluations. Evaluation Matters Magazine. https://idev.afdb.org/en/document/preparing-evaluation-future-big-data-modern-technologies-and-shifts-global-development

Matz, R. L., Fata-Hartley, C. L., Posey, L. A., Laverty, J. T., Underwood, S. M., Carmel, J. H., Herrington, D. G., Stowe, R. L., Caballero, M. D., Ebert-May, D., & Cooper, M. M. (2018). Evaluating the extent of a large-scale transformation in gateway science courses. Science Advances, 4(10), eaau0554. https://doi.org/doi:10.1126/sciadv.aau0554 DOI: https://doi.org/10.1126/sciadv.aau0554

Morell, J. A. (2021). A complexity-based metatheory of action for transformation to a green energy future. In R. D. Van den Berg, C. Maro, & M.-H. Adrien (Eds.), Transformational evaluation for the global crises of our times (pp. 345–370). IDEAS. https://ideas-global.org/ideas-book-transformational-evaluation-for-the-global-crises-of-our-times/

Ofir, Z., & Rugg, D. (2021). International developments in evaluation: Transforming evaluation [special section]. American Journal of Evaluation, 42(1), 47–138. DOI: https://doi.org/10.1177/1098214020979070

Okpe, B. (2020, second quarter). Integrating big data analytics and artificial intelligence into monitoring and evaluation in a fast-changing development landscape. Evaluation Matters Magazine. https://idev.afdb.org/en/document/preparing-evaluation-future-big-data-modern-technologies-and-shifts-global-development

Parunak, H. V. D. (2023). Analyzing the Behavioral Attractors of a Social Simulation. In P. A. Research, Model Mechanisms and Behavioral Attractors. Social Simulation Conference (SSC2022), Milan. https://www.abcresearch.org/abc/papers/SSC2022Attractors.pdf.

Patton, M. Q. (2019). Transformation to global sustainability: Implications for evaluation and evaluators. New Directions for Evaluation, 162, 103–117. https://doi.org/10.1002/ev.20362 DOI: https://doi.org/10.1002/ev.20362

Patton, M. Q. (2020). Blue marble evaluation: Premises and principles. Guilford Press. DOI: https://doi.org/10.31244/zfe.2020.02.09

Pearl, J. (2009). Causality: Models, reasoning and inference (2nd ed.). Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511803161

Phelan, S. E. (2001). What is complexity science, really? Emergence, 3(1), 120–136. https://doi.org/https://doi.org/10.1207/S15327000EM0301_08 DOI: https://doi.org/10.1207/S15327000EM0301_08

Picciotto, R. (2021). Toward a complexity framework for transformative evaluation. Journal.of MultiDisciplinary Evaluation, 16(35), 54–76. DOI: https://doi.org/10.56645/jmde.v16i35.643

Rogers, E. (2003). Diffusion of innovations (5th ed.). Free Press.

Rogers, K. (2012). Scientific modeling. Encyclopædia Britannica. https://www.britannica.com/science/scientific-modeling

Santa Fe Institute. (n.d.-a). Attractor. Complexity Explorer. https://www.complexityexplorer.org/explore/glossary/6-attractor

Santa Fe Institute. (n.d.-b). Emergence. Complexity Explorer. https://www.complexityexplorer.org/explore/glossary/414-emergence

Santa Fe Institute. (n.d.-c). Sensitive dependence. Complexity Explorer. https://www.complexityexplorer.org/explore/glossary/44-sensitive-dependence-on-initial-conditions

SDG Transformation Forum. (2020). Our theory of transformational change. SDG Transformation Forum.

Statistical model. (2023, June 30). In Wikipedia. https://en.wikipedia.org/w/index.php?title=Statistical_model&oldid=1161602898

Systems Innovation. (2020a). Attractor. YouTube. https://www.youtube.com/watch?v=C9Xl6BNu-kM

Systems Innovation. (2020b). Social attractors & chaos [Video]. YouTube. https://www.youtube.com/watch?v=C9Xl6BNu-kM

Theraulaz, G., & Bonabeau, E. (1999). A Brief history of stigmergy. Artificial Life, 5, 97–116. DOI: https://doi.org/10.1162/106454699568700

U.S. Department of Energy. (2012). DOE handbook: Accident and operational safety analysis: Vol. 1. Accident analysis techniques (DOE‐HDBK‐1208‐2012). https://www.standards.doe.gov/standards-documents/1200/1208-bhdbk-2012-v1/@@images/file

Van den Berg, R. D., Maro, C., & Adrien, M.-H. (Eds.). (2021). Transformational evaluation for the global crises of our times. International Development Evaluation Association (IDEA). https://ideas-global.org/wp-content/uploads/2021/07/2021-IDEAS-book-Transformational-Evaluation.pdf.

Wadeson, A., Monzani, B., & Aston, T. (2020 ). Process tracing as a practical evaluation method: Comparative learning from six evaluations. https://mande.co.uk/wp-content/uploads/2020/03/Process-Tracing-as-a-Practical-Evaluation-Method_23March-Final.pdf

West, G. (2017). Scale: The universal laws of growth, innovation, sustainability, and the pace of life in organisms, cities, economies, and companies. Penguin.

Zazueta, A. (2017). Principles for the development of integrated transformational projects in climate change and chemicals & waste. Global Environment Facility. http://www.stapgef.org/sites/default/files/publications/Final_Principles%20for%20%20Development%20of%20Integrated%20CCM%20and%20ChW%20Projects_October%202017.pdf

Zazueta, A. (2019). Using theories of change to steer transformational development [Paper presentation]. IDEAS Global Assembly / 3rd International Conference on Evaluating Environment and Development, Prague, Czech Republic.

Zellner, M. L., Lyons, L. B., Hoch, C. J., Weizeorick, J., Kunda, C., & Milz, D. C. (2012). Modeling, learning, and planning together: An application of participatory agent-based modeling to environmental planning. URISA Journal, 24(1), 77–92. https://www.academia.edu/download/47465368/Zellner_2012.pdf